
ADAPTIVE MULTIRESOLUTION DECOMPOSITION: APPLICATION TO LOSSLESS
IMAGE COMPRESSION

Hocine Bekkouche and Michel Barret

Supélec, Équipe Signaux et Systèmes Electroniques
2 rue É. Belin 57070 METZ FRANCE

Hocine.Bekkouche@supelec.fr and Michel.Barret@supelec.fr

ABSTRACT

In this paper we introduce the use of adaptive filter banks in
lossless compression of images with progressive coding in
resolution. During the decomposition the filter adapts itself
automatically to various regions of the image, preserving
the perfect reconstruction property. Effects of parameters
used in the decomposition have been studied. Simulation
results are given and compared with well-known codecs.
The proposed scheme gives, on average, smaller lossless
compression bit rate. However, This improvement in per-
formance is achieved at the expense of an increase in com-
putational complexity.

1. INTRODUCTION

The lossless compression of images finds applications in
satellite and medical imaging, where a near lossless cod-
ing is not satisfactory. The techniques of progressive cod-
ing, like EZW algorithm of Shapiro [1] or SPIHT algorithm
introduced by Said and Pearlman [2], are based on multires-
olution decompositions of the initial image and they are
widely used today for near lossless or lossless image cod-
ing [3]. In these multiresolution decompositions, the coeffi-
cients of the filters are selected among a predetermined set
of possible values, but they are not calculated in order to
adapt at best to the image. In addition, most of the lossless
image compression algorithms used today, like CALIC [4]
and LOCO-I [5], are not associated with multi-resolution
transformations. On the other hand, they adapt themselves
to the image using context-based predictors.

Over the last years, image compression algorithms us-
ing the linear mean squared estimation (LMSE) techniques
have been tested (see [6] and its bibliography), but they were
not associated with pyramidal hierarchical decompositions.
Recently, lossless image compression techniques combin-
ing the LMSE and the pyramidal hierarchical decomposi-
tion have appeared. Some of them use wavelets decom-
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positions [7, 8], while others use subband decompositions
with nonlinear filters [9]. An adaptive polyphase subband
decomposition structure, based on the LMS algorithm, was
proposed in [10]. We presented in [11] a multiresolution
decomposition method with a global adaptation. Although
this adaptation provides an optimal prediction filter (from
least squares point of view), it is still impossible to track
abrupt changes of local statistics in the image.

In this paper we present a multiresolution decomposition
technique based on the recursive least-squares (RLS) algo-
rithm. An important feature of the RLS algorithm is that
it converges faster than the LMS algorithm, which makes
it more effective for nonstationary signals, such as images.
Moreover, the use of an ARMA model provides a better es-
timation than an AR model, which improves the compres-
sion performance. Progressive coding in resolution is possi-
ble with the proposed scheme. However, it does not permit
progressive coding in quality, because the decoder cannot
recover the filter coefficients from the truncated bit stream.
That leads to a rapid divergence of the algorithm.

In the second section, the proposed perfect reconstruc-
tion adaptive multiresolution decomposition is described in
details. In section 3, effects of parameters are experimen-
tally studied and a comparisons with well-known codecs as
SPIHT [2], LOCO-I (JPEG-LS) [5] and CALIC [4] is pre-
sented.

2. MULTIRESOLUTION DECOMPOSITIONS

The general principle of the subband decompositions we
have implemented is shown in the block diagram of Fig. 1.
The original imageI is decomposed by decimation into two
sub-imagesI1 andI2.

The imageI2 is estimated according to the linear relation:

Î2(i; j) = X
(h;k)2�1

ahkI1(i� h; j � k)
+ X

(h;k)2�2
bhkI2(i� h; j � k); (1)
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Fig. 1. Subband decomposition. The original imageI is
decomposed into two sub-imagesI` andIh.

where�1 and�2 are finite subsets ofZ2. The coefficientsahk andbhk are updated during the decomposition by the
RLS method. The estimated imageI2 is scanned in a raster
manner. Initially the original imageI is replaced by two
sub-imagesI` andIh defined by the equations:

I` = I1 (2)

Ih(i; j) = I2(i; j)� jÎ2(i; j)k ; (3)

where for a real numberx, bxc represents the integer part ofx + 1=2. Thereafter we apply again the same process (ex-
changing lines and columns) on the sub-imageI` in order
to obtain the two sub-imagesI`` andI`h. The other sub-
imageIh in only subject to the polyphase transform, giving
the sub-imagesIh` andIhh. Hence one level of decomposi-
tion transformsI into four sub-imagesI``, I`h, Ih` andIhh.
Finally, for the multiresolution decomposition, we apply the
same process to the low resolutionI`` image. Let�1(p) be
the set of relative integer couples whose absolute value of
each term is less than or equal top, and let

�2(p) =
8<
:(h; k) 2 Z2

������
h = 0 and 1 � k � p

or
jkj � p and 1 � h � p

9=
;

(4)
Let us introduce the vectory1(i; j) (resp.y2(i; j)) of di-

mensionr1 (resp.r2) containing the pixelsI1(i � h; j �k)j(h;k)2�1(p) (resp.I2(i�h; j�k)j(h;k)2�2(p)), reordered
as indicated in figure 2(a) (resp. in figure 2(b)) and where
only ther1 (resp.r2) first elements are retained. With this
reordering, only ther1 + r2 closest pixels toI(i; j) appear
in the observation vectory(i; j) = (yt1(i; j); yt2(i; j))t. The
subsets�1 and�2 permit a perfect reconstruction in decod-
ing. Using the coefficientsahk andbhk, the vectorc(i; j) of
the estimation filter coefficients is built in the same manner
as the observation vector. In terms of these matrices defini-
tions, equation (1) is written as follows:

Î2(i; j) = ct(i; j)y(i; j) (5)

The optimal filterĉt(i; j), from the least squares point of
view, is the solution of the system of normal equations [12]
and is given by:

ct(i; j) = ��1(i; j)� (6)

where� is the autocorrelation matrix of the observation
vector and� is the cross-correlation vector between the ob-
servation vector and the desired responseI2(i; j). This di-
rect solution needs the inversion of the autocorrelation ma-
trix. To avoid performing such an operation we calculate for
each(i; j) the least square estimatec(i; j) recursively. The
adaptive decomposition algorithm is summarized in table 1.
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Fig. 2. Order of appearance of the pixels forp � 3 in(a) �1(p) and(b) �2(p).

3. PRINCIPAL RESULTS

We chose a set of 8-bits test images, with various sizes and
complexities. In order to obtain a complete lossless image
compression system we combine the proposed RLS-based
adaptive multiresolution decomposition with an arithmetic
coder with adaptive model. The use of a forgetting factor�
(see Tab. 1) equal to 1 is suited for a stationary environment,
for which the best steady-state results are obtained. How-
ever, when the RLS algorithm operates in a nonstationary
environment such as images, the algorithm must use finite
memory. A value of� less than 1 is used. By doing so, the
algorithm attains the capability to track statistical variations
in the environment in which it operates. An experimental
value of the forgetting factor� equal to 0.9995 is a good
compromise. This value is used in all our simulations. The
results of lossless compression of five images are given in
table 2. The� = 0:9995 case performs significantly bet-
ter than� = 1 case for all the five images. To extend the
image at boundaries, two techniques are possible: periodic
extension and symmetric extension. It is intuitive and has
also been verified by our experiments that the symmetrical



Table 1. Estimation and adaptation algorithm.

Initialisationc = (1; 0; : : : ; 0)t, with c 2 Rr1+r2
K = ��1I, with I, r1 + r2 order identity matrix

and� a small positive constant.� = 0; 9995, forgetting factor.

for i = 1; 2; : : :
for j = 1; 2; : : :I`(i; j) = I1(i; j)Î2(i; j) = bcty(i; j)cIh(i; j) = I2(i; j)� Î2(i; j)u = Ky(i; j)
K = 1� (K�

uut�+ y(i; j)tu )c = c+ Ih(i; j)Ky(i; j)
end loopj

end loopi

extension gives better compression results than periodic ex-
tension. This is due to the fact that the symmetric extension
does not introduce jump discontinuities in the extended sig-
nal. Discontinuities are undesirable, because they increase
the amount of high frequency energy in the signal. Loss-
less compression results for the same five test images are
shown in table 2. In general, the results obtained with sym-
metric extension are comparable to those obtained with pe-
riodic extension. In figure 3, the lossless compression bit
rates are plotted versusr1 and r2. It can be clearly seen
that the use of an ARMA estimation model (r2 6= 0 ) gives
smaller compression bit rate than an AR model (r2 = 0). It
can be noticed in figure 3 that the compression bit rate de-
creases whenr1 or r2 increases. This reduction vanishes
when r1 and r2 reach their optimal values. These opti-
mal values change according to the type of the image. For
natural images,(r1; r2) = (8; 4) is a satisfactory choice,
while for MRI images, which are generally smooth images,
a small number of pixels is sufficient to have a good esti-
mation and the experimentation has shown that the values(r1; r2) = (6; 0) are sufficient. The choice ofr1 and r2
is limited by the computing time. The figure 4 shows the
variations of the computing time for an image512 � 512
versusr1 (for r2 = 1), the adaptive decomposition is com-
putationally demanding. Its computational complexity isO(r1 + r2)2). However, its mathematical formulation and
therefore the implementation is relatively simple. This com-
putational complexity can be reduced, without loss of per-
formance, toO(r1 + r2) by implementing a fast version of
RLS [12]. The table 3 shows a comparative evaluation of the
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Fig. 3. Lossless compression bit rate inbpp versus filter
order, obtained with the imageFinger1(512x512).

P.E. S.E.
image � = 0:9995 � = 0:9995 � = 1
Lena 4.21 4.21 4.22

Goldhill 4.72 4.71 4.74
Barbara 4.54 4.54 4.65

Irm1 2.89 2.88 3.18
Finger1 4.23 4.23 4.29

Table 2. Lossless compression results (inbpp) for periodic
extension (P.E.) and symmetric extension (S.E.), and for two
values of the forgetting factor,� = 0:9995 and� = 1

performance of the proposed RLS-based lossless compres-
sion codec with other lossless compression systems such as
SPIHT [2], LOCO-I (JPEG-LS) [5] and CALIC [4].

4. CONCLUSION

In this paper we have introduced an RLS-based adaptive
subband decomposition scheme. The filter adapts itself to
different regions of the image, hence it tracks the nonsta-
tionarities. We applied this scheme to the lossless image
compression. An experimental study and a comparison of
compression results with other methods are presented. The
proposed compression system gives, on average, smaller
compression bit rates than other codecs, with the trade-off
of an increase in the computational complexity.
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Fig. 4. Computation time versus filter order, obtained for a512� 512 image.
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