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ABSTRACT positions [7, 8], while others use subband decompositions
In this paper we introduce the use of adaptive filter banks in with nonlm_egr filters [3]. An adaptive polyphase §ubband
. . : : .. decomposition structure, based on the LMS algorithm, was
lossless compression of images with progressive coding in roposed in [10]. We presented in [11] a multiresolution
resolution. During the decomposition the filter adapts itself gec%m osition m.ethod?/vith 2 alobal adaptation. Although
automatically to various regions of the image, preserving , . positi ) g ptation. 9
this adaptation provides an optimal prediction filter (from

the perfect reconstruction property. Effects of parameters . ) L .
: ", : . . least squares point of view), it is still impossible to track
used in the decomposition have been studied. Simulation S .
abrupt changes of local statistics in the image.

rTehs;J l:j Oagssgglesr;hzn:] ec;\r/]é):,r%dn V:\tz r;"; ;I, ksnn?;vl?erc?g: sCIZé In this paper we present a mgltiresolution decomposition
compression bit rate. However, This improvement in per- ﬁechnlque pased on the recursive Ieast-squargs (RI.‘S) algo-
. . ' : . rithm. An important feature of the RLS algorithm is that
forma_mce is achlev_ed at the expense of an increase in coms, converges faster than the LMS algorithm, which makes
putational complexity. it more effective for nonstationary signals, such as images.
Moreover, the use of an ARMA model provides a better es-
1. INTRODUCTION timation than an AR model, which improves the compres-
sion performance. Progressive coding in resolution is possi-
The lossless compression of images finds applications inp|e with the proposed scheme. However, it does not permit
satellite and medical imaging, where a near lossless cod-rogressive coding in quality, because the decoder cannot
ing is not satisfactory. The techniques of progressive cod-recover the filter coefficients from the truncated bit stream.
ing, like EZW algorithm of Shapiro [1] or SPIHT algorithm  That leads to a rapid divergence of the algorithm.
introduced by Said and Peariman [2], are based on multires- | the second section, the proposed perfect reconstruc-
olution decompositions of the initial image and they are tjon adaptive multiresolution decomposition is described in
widely used today for near lossless or lossless image cod-etails. In section 3, effects of parameters are experimen-
ing [3]. In these multiresolution decompositions, the coeffi- {41y studied and a comparisons with well-known codecs as

cients of the filters are selected among a predetermined se§p|HT [2], LOCO-I (JPEG-LS) [5] and CALIC [4] is pre-
of possible values, but they are not calculated in order to ggnted.

adapt at best to the image. In addition, most of the lossless
image compression algorithms used today, like CALIC [4]
and LOCO-I [5], are not associated with multi-resolution

transformations. On the other hand, they adapt themselve%-he general principle of the subband decompositions we

to the image using context-based predictors. have implemented is shown in the block diagram of Fig. 1.

, Over _the last years, image compression algonthm.s US"The original imagd is decomposed by decimation into two
ing the linear mean squared estimation (LMSE) teChn'q“eSsub-imagesh andl,

have been tested (see [6] and its bibliography), but they were The imagel; is estimated according to the linear relation:
not associated with pyramidal hierarchical decompositions.
Recently, lossless image compression techniques combin-

2. MULTIRESOLUTION DECOMPOSITIONS

ing the LMSE and the pyramidal hierarchical decomposi- L(,j) = Y anDi(i—h,j—k)
tion have appeared. Some of them use wavelets decom- (h,k)EA,
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1 I, The optimal filteré' (i, j), from the least squares point of
otonon oo view, is the solution of the system of normal equations [12]
ogoood P0|ypha5e 000 \ and |S g|Ven by
| M Predictor
(i, 5) = @70, 5)0 (6)
Transform |gop
EES - ’ where® is the autocorrelation matrix of the observation
I, s I vector and is the cross-correlation vector between the ob-

servation vector and the desired respohge, j). This di-

rect solution needs the inversion of the autocorrelation ma-
Fig. 1. Subband decomposition. The original imafés trix. To avoid performing such an operation we calculate for
decomposed into two sub-imaggsandI;,. each(i, j) the least square estimatg, j) recursively. The

adaptive decomposition algorithm is summarized in table 1.

whereA; andA, are finite subsets 2. The coefficients

apy, andby,;, are updated during the decomposition by the (a) (b)
RLS method. The estimated imaggis scanned in a raster v in
manner. Initially the original imagé is replaced by two 29 44] 36| 48[ 3523 28 2al21]17114] 16 20 23
sub-imaged, andI;, defined by the equations: r
45124)18|11(17(23|42 221129 (6| 8(11]19
37119| 72| 616|134 18|10( 4112|3715
L= h @ so[zols2{ 34| 5 [eferts 1|5 a3l
In(i,j) = L(i,5) — [Iz(i,j)J ; (3 :|30{20|8|4|915(33
. 38|25|21(13]|14| 22|41
where for a real number, |z | represents the integer part of
x + 1/2. Thereafter we apply again the same process (ex- 46|39[31) 26| 32| 40) 47

changing lines and columns) on the sub-imdgén order

to obtain the two sub-imagek, andI;;,. The other sub-  Fig. 2. Order of appearance of the pixels for< 3 in
imagel}, in only subject to the polyphase transform, giving (@) A1 (p) and(b) Az (p).

the sub-image$,; and;;. Hence one level of decomposi-

tion transformd into four sub-image$;,, I, I, andlyy,.

Finally, for the multiresolution decomposition, we apply the

same process 'Fo the low resolutifn image. LetA; (p) be 3. PRINCIPAL RESULTS
the set of relative integer couples whose absolute value of
each term is less than or equaltcand let We chose a set of 8-bits test images, with various sizes and
complexities. In order to obtain a complete lossless image
h=0 and 1<k<p compression .systemlwe combine t'h.e proposed R.LS-ba.sed
As(p) = { (h, k) € 72 or adaptlvg multlregolutlon decomposition with an arithmetic
k|<p and 1<h<p coder with adaptive quel._The use ofgforgettlng_ factor
- - ) (see T{ib. 1) equal to 1 is suited for a stationary er_mronment,
Let us introduce the vector, (i, j) (resp.y, (i, 7)) of di- for which the best steady-state results are obtained. How-
mensionr; (resp.rs) contalnmg the pixeld; (i — h,j — ever, when the RLS algorithm operates in a nonstationary

k)| (bt (p) (r€SPLs (i — iy j — k)| (h k) e An (), TEOFderEd environment such as images, the algorithm must use finite

as indicated in figure 2(a) (resp. in figure 2(b)) and where memory. A value of: less than 1 is used. By doing so, the
only ther, (resp.r.) first elements are retained. With this @lgorithm attains the capability to track statistical variations
reordering, only the; + r, closest pixels td (i, j) appear in the environment.in which it operates. An egperimental
in the observation vectay(i, j) = (gi(i’j)’%(i,j))t_ The value of the forg.ettmg fa_ctoa qual to 0.9995 is a good
subsetg\; andA, permit a perfect reconstruction in decod- Compromise. This value is used in all our simulations. The
ing. Using the coefficientsy, andby;, the vector(i, j) of results of lossless compression of five images are given in
the estimation filter coefficients is built in the same manner t@ble 2. Thex = 0.9995 case performs significantly bet-

as the observation vector. In terms of these matrices defini-ter thana = 1 case for all the five images. To extend the
tions, equation (1) is written as follows: image at boundaries, two techniques are possible: periodic

X extension and symmetric extension. It is intuitive and has
I,(i,5) = (i, §)y (i, §) (5) also been verified by our experiments that the symmetrical



Table 1. Estimation and adaptation algorithm.

54 - ——12=0
Initialisation cea-2=4
c=(1,0,...,0)%, withc € R" 7" 5.2 -r2=8
K = 61, with I, 7, + - order identity matrix -e-r2=12

and¢ a small positive constant.
a = 0,9995, forgetting factor.

AR model

4,8 1 ARMA model
fori=1,2,...
forj=1,2,...
I(i, ) = L, (i, )
12(27.7) = LQtQ(ZaJ)J R
Ih(lvj) = 12(17.7) - IQ(Zaj)
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Lossless compression bit rate (bpp)

u = Ky(z,]) 421
t
K= (K- — 2% ) R
a a + g(zhj) g - ™ wn ~ (o] — ™ n N~ (2] -l [92]
c=c+In(i, ))Ky(i, ) - T e
end loopj a rt
end loopi
Fig. 3. Lossless compression bit rate ipp versus filter
order, obtained with the imadgénger1(512x512).
extension gives better compression results than periodic ex- i P.E. S.E.
tension. This is due to the fact that the symmetric extension image | «=0.9995 | «=0.999 | a=1
does not introduce jump discontinuities in the extended sig- Lena 4.21 4.21 4.22
nal. Discontinuities are undesirable, because they increase | Goldhill 4.72 4.71 4.74
the amount of high frequency energy in the signal. Loss- Barbara 4.54 4.54 4.65
less compression results for the same five test images are Irm1 2.89 2.88 3.18
shown in table 2. In general, the results obtained with sym- Fingerl 4.23 4.23 4.29

metric extension are comparable to those obtained with pe-

riodic extension. In figure 3, the lossless compression bit Table 2. Lossless compression results gpp) for periodic
rates are plotted versus andr,. It can be clearly seen extension (P.E.) and symmetric extension (S.E.), and for two
that the use of an ARMA estimation modeb (£ 0) gives  Values of the forgetting facton, = 0.9995 anda = 1

smaller compression bit rate than an AR model£ 0). It

can be noticed in figure 3 that the compression bit rate de-
creases when; or r, increases. This reduction vanishes
whenr, andr, reach their optimal values. These opti-
mal values change according to the type of the image. For
natural images(ry,r2) = (8,4) is a satisfactory choice,
while for MRI images, which are generally smooth images,
a small number of pixels is sufficient to have a good esti-
mation and the experimentation has shown that the values 4. CONCLUSION

(r1,m2) = (6,0) are sufficient. The choice of; andr,

is limited by the computing time. The figure 4 shows the In this paper we have introduced an RLS-based adaptive
variations of the computing time for an imag&2 x 512 subband decomposition scheme. The filter adapts itself to
versusry (for ro = 1), the adaptive decomposition is com- different regions of the image, hence it tracks the nonsta-
putationally demanding. Its computational complexity is tionarities. We applied this scheme to the lossless image
O(ry + r9)?). However, its mathematical formulation and compression. An experimental study and a comparison of
therefore the implementation is relatively simple. This com- compression results with other methods are presented. The
putational complexity can be reduced, without loss of per- proposed compression system gives, on average, smaller
formance, taO(r; + r2) by implementing a fast version of compression bit rates than other codecs, with the trade-off
RLS [12]. The table 3 shows a comparative evaluation of the of an increase in the computational complexity.

performance of the proposed RLS-based lossless compres-
sion codec with other lossless compression systems such as
SPIHT [2], LOCO-I (JPEG-LS) [5] and CALIC [4].
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Fig. 4. Computation time versus filter order, obtained for a
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