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Abstract

We present an adapted nonlinear multiresolution de-
composition (with some derivatives) of still images
that permits perfect reconstruction. A hierarchical
pyramidal decomposition with maximal decimation
is used. For one level of decomposition, the input
image I is partitioned into two subimages I; and I
obtained by down-sampling. The subimage I; is un-
changed. The subimage I is replaced by the rounded
output I of a 2D FIR filter whose coefficients have
first been adapted to I and which has the entries I;
and . A similar processing is then applied one time
to each of the subimages I; and Ij,. The nonlinear-
ity introduced by the rounding permits to perfectly
inverse the process, even when inverse filters (which
are all ARMA) are not BIBO stable. Applications
are given in lossless image coding, with possibility of
embedded zerotree coding.

1 Introduction

Lossless image compression with embedded coding
is well suited to image transmission, where the user
wants to display a low quality image quickly and then
successively improves it until lossless transmission, if
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wished. This kind of image transmission finds ap-
plications in various domains, like archiving, medical
or satellite image processing. The advantage of the
embedded coding is to give the user a total control
of the precision in which the image pixels are repre-
sented. These image coding techniques, like the em-
bedded zerotree wavelet (EZW) algorithm introduced
by Shapiro [11] and the SPIHT algorithm introduced
by Said and Pearlman [10] are based on a multires-
olution decomposition—with unitary transforms—of
the input image. These algorithms are today widely
used in various applications, particularly for lossy or
nearly lossless image compression.

Over the last years, papers presenting perfor-
mances of lossless image codecs based on multires-
olution decompositions have been published. Some
of them use wavelet decompositions [1,7] and some
others use subband decompositions with adaptive or
nonlinear filters [5,6]. In [5], the authors use a
polyphase subband decomposition, associated with
a LMS adaptation, where the estimation filter co-
efficients are updated according to a gradient type
algorithm.

In this paper we study a special frame of the
nonlinear subband decomposition with perfect re-
construction given in [6]. A major difference with
our approach is that the decomposition and recon-
struction filterbanks are adapted to the input image,
in order to minimize a mean square error. More-



over, the adaptive polyphase subband decomposition
structures used in [5] for image compression differ
from ours in three points: the first one is that we
use nonlinear filterbanks (this possibility is already
mentioned in [5] but is not used), the second one is
that we do not update the filters coeflicients pixel per
pixel (the method we use in order to adapt the filters
coefficients to the input image is global) and the third
one is that we use ARMA filters (and not just 2D FIR
filters). This allows to appreciably reduce the mean
square error. The second point is also very important
for applications in lossless image coding. Our method
allows embedded zerotree coding whereas an adaptive
method could not, because it would be impossible to
properly update the filters coefficients at the receiver
from the truncated bit stream. A description of the
nonlinear multiresolution decomposition (with some
derivatives) is given in section 2.

An application is presented in lossless image com-
pression. Many of the existing lossless image codecs
do not use a multiresolution decomposition hence
they do not allow embedded coding. Moreover, they
use either a fixed predictor filter (as in the S+P al-
gorithm) or a context-based adaptive filter (as in
CALIC codec [12]). In section 3 we give results of
tests we have made after having implemented vari-
ous derivatives of the above mentioned decomposi-
tion. We use either a non separable quincunx dec-
imation or a separable decimation at a rate of two-
to-one. FIR and ARMA reconstruction filters have
been tested. The behaviours of the different methods
are presented as a function of the parameters. The
varying parameters are the orders of the optimal fil-
ter and the number of level in the decomposition. A
comparison between the performances of the different
methods and the S+P algorithm [10] is then given.

2 Adapted nonlinear decompo-
sition

The general principle of the subband decompositions
we have implemented is shown in the block diagram
of Fig. 1, in the case of a one-level decomposition.
The input image [ is transformed into four subim-

ages. One of them, Iy, results only from a decima-
tion applied to I. It is the low resolution subimage.
The others are the detail subimages. For a two-level
decomposition, I, is processed with the same algo-
rithm and hence is transformed into four subimages.
The same process is carried on for multilevel decom-
positions.
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Figure 1: One-level subband decomposition. The 2!
block corresponds to a one row (or column) shift in
order to decompose I into the two sub-images I; and
I, without loss of information.

The image I is an array with M rows and N
columns. Each pixel is coded with K bits. The im-
age [ is partitioned into two subimages I; and I, with
a decimation at a rate of two-to-one. We have cho-
sen two kinds of decimation: a quincunx one and a
separable one. In the quincunx case, the image I is
rotated of 7/4 before the down-sampling, this gives
two diamond-shape subimages which are completed
with zeros in order to be represented by the matrices
I, and I,. In the separable case, the down-sampling is
alternatively applied to the rows and to the columns.
In the following, Ms and N5 denote respectively the
numbers of rows and columns of I,. After the dec-
imation, the image I is estimated according to the
linear relation

L(,j) = Y awhi(i—h,j—k)
(h,k)eAq
+ Z bthQ(i_hvj_k)a (1)
(h,k)EA2

where A; and A, are finite subsets of rational inte-
gers (i.e. natural numbers and their opposites). We



have tested different domains A; and A, (see sec-
tion 3). The coefficients apy and byy are computed in
order to minimize the mean square error

—fg(i,j))Q.

In the relations (1) and (2), the subimages I and I,
are completed by zeros. A first step of the one-level
decomposition consists in the transformation of the
image I into the two subimages I, and I; given by
the relations

Mz No

W= (L)

i=1 j=1

(2)

I[ = Il
I(i,j) = I(i,j) — round[l>(i, )]

(where round[z] refers to the nearest integer of the
real number z) for all the pixels (i,j) of Is. The
same algorithm (where the decimation on the rows
is replaced by the decimation on the columns in the
case of a separable down-sampling) is then applied to
each of the two subimages I; and I} in order to give
the four subimages Iys, Ipp, Ine and Ipy.

Let us introduce the z-transforms I5(z1,22),
Ii(z1,20) and Ip(z1,22) of respectively I5(i,7),
I,(i,7) and Iy (i,j) and the transfer functions

(3)
(4)

A(z1, 22) Z ankzyzy (5)
(h,k)eA;

B(z1,22) Z bz 5. (6)
(h,k)EAS

If we neglect the nonlinearity (i.e. the function

round| | in the relation (4)) we obtain

Ih(21722) = _A(217Z2)11(Z1;Z2)
+[1 = B(21, 22) 2 (21, 22)  (7)
and hence
1 A )T
Iy(z1,22) = n(z1,22) + A(z1, 22) 1(z1,22)' ®)

1-— B(Zl,ZQ)

In order to reconstruct the subimage I from I; and
I, the subset As must be chosen in such a way that
the filter m is causal or semi-causal. More-
over, this filter can be unstable and therefore a test of

stability is required (see [2] for 2D recursive filter sta-
bility tests). When the coefficients by are adapted to
the input image, the filters stability must be tested
for each input image and this takes a lot of CPU
time. The problem of stability tests disappears by
introducing the nonlinearity in the relation (4).

For image coding applications, the filter coefficients
must be transmitted to the decoder. In order to
simplify their transmission, we truncate the digits of
their fractional part according to the relation

ank = round[S * ahk]/S (9)
(and a similar relation with bpy,), where the scale S is
a natural number (in our tests S = 10°). Let Iy (i, 5)
be the left side of the relation (1), when the filter
coefficients in the right side are replaced by an and
bhk Therefore I must be replaced by I in the rela-
tion (4) in order to permit perfect reconstruction of
I, from I, and Ij:

I2(7’7.7) :Ih(za.]) +round[I2(l,])] (10)
Moreover, it is better to apply the decomposition to a
zero mean image I, because under this condition the
correlation between the pixel Ij(i,j) and the pixels
Ij(i — h,j — k) in the neighborhood (h,k) € Ay of
I, (i, j) vanishes when we neglect the effects of the non
linearity in the relation (4) and the difference between
I, and . In order to perfectly reconstruct the image
I from the four subimages Izs, Ipp, Ine and Iyp, the
transmission of a few parameters is required. These
parameters are the dimension M, N of I, the filters
orders, the filters coefficients apy, Bhk, the mean of
and the level L of decomposition. Indeed, it is easy
to reverse the relations (3) and (4) when the region
of support A, in the relation (1) is a non-symmetric
half-plane or a quarter-plane.

We have also implemented nonlinear decompo-
sitions nearly identical to the above mentioned
ones. The difference lies in the introduction of
the S-transform [10] in the process, after the down-
sampling and before the filtering. The subimages
I,(i,7) and I5(i,j) are then respectively replaced, in
the relations (1) and (2), by I{(i,7) and I}(i, ) so



that

Ii(i,j) = floor[(Ii(i,]) + I2(i,5))/2]
Ié(l,']) = Il(iaj)_IQ(iaj)

(where floor[z] refers to the downward truncation
of the real number z). The S-transform is applied
at each stage, i.e. at the stage that decomposes the
subimage I, into Iy, and Iy, at the stage that decom-
poses the subimage I, into I, and I, and so on for
a multi-level decomposition. Since the sum and the
difference of two integers give either two odd or two
even integers, the S-transform is reversible [10]:

(11)
(12)

L(i,j) = IL(ij)+ floor [12(”2)“] (13)
3 Progressive lossless image

coding

Let us introduce different acronyms in order to de-
scribe the algorithms we have implemented. Pyrami-
dal RLMSE (Rounded Linear Mean Square Estima-
tion) is the generic name of all the methods. The
qualifier—either FIR or ARMA-—specifies whether
the filters in the relation (8) are either with a Finite
Impulse Response (i.e. B(z1,22) =0,

A= {(hk) €z’ ||h] <pand [k| <q}  (15)

and A, is the empty set) or Auto-Regressive with
Moving Average (i.e.

0<h<p and
(h,k) € 72 or
0<k<q and h=0

k| <q
AQZ

(16)
and A; is given in the relation (15)). The numbers
p and g are the orders of the filter. We also specify
the down-sampling type: either separable or quin-
cunx. All the encoded images have the parameters
M = N = 512 and K = 8. In table 1, we show
the variations of the first order entropy of the trans-
formed image with respect to both the orders (p,q)
of the filter and the level L of decomposition for a

w,O\L | 2 3 4 5 6
(1,1) | 530 | 5.07 | 5.02 | 5.01 | 5.00
(1.2) 528 5.05 [ 5.00 | 4.99 | 498 | @
(22) | 527|503 | 408 | 4.97 | 497
(p, )\ L 2 3 4 5 6
(LD 533 [ 511500 [ 505 [5.05 |,
(1,2) | 532|509 | 5.04 | 5.03 | 5.03
(2,2) | 530 | 5.07 | 5.02 | 5.01 | 5.01
. O\L | 2 3 4 5 6
(1,1) | 538 | 5.12 | 5.06 | 5.04 | 5.0
(12) | 5.35 [ 509 5.03 | 5.02 | 5.01 |
(2,2) | 534 | 5.07 | 5.01 | 5.00 | 5.00

Table 1: First order entropy of the transformed image
by the pyramidal RLMSE algorithm with a quincunx
decimation and ARMA filters (a), FIR filters (b) or
ARMA filters associated with the S-transform (c).
The image is Goldhill 512.

pyramidal RLMSE algorithm with a quincunx dec-
imation and either ARMA filters (a), or FIR filters
(b), or ARMA filters associated with the S-transform
(c). In table 2 (a), (b) and (c) the same variations
with a separable decimation are shown. In table 3 we
present the first order entropy of the image obtained
with the S+P transform whose filter gives the small-
est entropy (it is predictor B [10]). In table 4, 5 and
6 we show the variance (i.e. the ratio of the mean
square error over the number of pixels) of the trans-
formed image for the same algorithms as in table 1,
2 and 3 respectively. All the presented results have
been obtained with the image Goldhill.

It is well known [10] that the minimum of the vari-
ance does not generally coincide with the minimum of
the first order entropy, when parameters vary. Never-
theless, in our tests of pyramidal RLMSE algorithms
these minima are generally close. It is not easy to
compare various multiresolution decompositions in
the aim of lossless image coding, because the discern-
ing criteria in this case is the size of the bit stream
after the reversible encoding of the transformed im-
age. Therefore, the performances of the codec depend
on the reversible encoder applied to the transformed



p,O\L | 2 3 4 5 6
(1,1) | 525 | 5.02 | 497 | 4.96 | 4.95
(1.2) 524 [ 501495 [ 4.94 | 4904 | @
(2,2) | 523 | 5.00 | 4.05 | 4.93 | 4.03
(p,@)\L 2 3 4 5 6
(LD 527 [5.04 [ 499 498 [498)
(1,2) | 527 | 5.04 | 4.00 | 4.98 | 4.08
(2,2) | 526 | 5.04 | 4.98 | 4.97 | 4.97
(p,\L 2 3 4 5 6
(1,1) [ 531 | 5.05 | 499 | 4.97 | 497
(1.2) 530 5.04 [ 497 [4.95 [ 495 |©
(22) | 520 | 5.03 | 4.96 | 4.95 | 4.95

(p,)\L 2 3 4 5
(1,1) | 216.08 | 114.12 | 90.33 | 84.61
(1.2) | 215.08 [ 11210 | 88.17 | 8233 | @
(2,2) | 212.55 | 100.33 | 85.34 | 79.50
P O\L | 2 3 4 5
(,D | 22361 | 12182 | 98,52 | 9295 |
(1,2) | 221.52 | 119.56 | 96.16 | 90.57
(2,2) | 219.92 | 117.76 | 94.26 | 88.67
(p,)\L 2 3 4 5
(1,1) | 218.40 | 116.58 | 93.20 | 87.95
(1.2) | 213.70 [ 11127 | 87.66 | 8235 |
(2,2) | 211.24 | 108.47 | 84.71 | 79.39

Table 2: First order entropy of the transformed image
by the pyramidal RLMSE algorithm with a separable
decimation and ARMA filters (a), FIR filters (b) or
ARMA filters associated with the S-transform (c).
The image is Goldhill 512.

S+P\L | 2 | 3 | 4 | 5 | 6 |
S+P

Table 3: First order entropy of the S+P transform.
The image is Goldhill 512.

image. However, the first order entropy of the trans-
formed image gives an indication of the ability of the
pyramidal RLMSE algorithms to lossless image cod-
ing. We have implemented an embedded zero-tree
coding applied to the transformed image, following
the SPTHT method described in [9]. In table 7, the
compression bit rate obtained with the reversible en-
coding applied after pyramidal RLMSE decomposi-
tions is given and compared with the S+P transform,
for different images.

4 Conclusion

We have presented an adapted nonlinear multireso-
lution decomposition (with some derivatives) of still
images that permits perfect reconstruction. It is a
hierarchical pyramidal decomposition with maximal

Table 4: Variance of the transformed image by the
same pyramidal algorithms as in table 1.

decimation. The decomposition and reconstruction
filterbanks are based on rounded linear mean square
estimations. With ARMA reconstruction filters, the
rounding applied to the output ensures the stability
of the system, even when the ARMA filter is BIBO
unstable.

An application in lossless image coding has been
presented. Let us emphasize that the adapted mul-
tiresolution decomposition described in this paper al-
lows embedded zero-tree coding. The performances
of our decomposition and of the S+P transform have
been compared. It appeared that our decomposition
has a greater coding gain for IRM images.
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