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Abstract
We present an adapted nonlinear multiresolution de-composition (with some derivatives) of still imagesthat permits perfect reconstruction. A hierarchicalpyramidal decomposition with maximal decimationis used. For one level of decomposition, the inputimage I is partitioned into two subimages I1 and I2obtained by down-sampling. The subimage I1 is un-changed. The subimage I2 is replaced by the roundedoutput Ih of a 2D FIR �lter whose coe�cients have�rst been adapted to I and which has the entries I1and I2. A similar processing is then applied one timeto each of the subimages I1 and Ih. The nonlinear-ity introduced by the rounding permits to perfectlyinverse the process, even when inverse �lters (whichare all ARMA) are not BIBO stable. Applicationsare given in lossless image coding, with possibility ofembedded zerotree coding.
1 Introduction
Lossless image compression with embedded codingis well suited to image transmission, where the userwants to display a low quality image quickly and thensuccessively improves it until lossless transmission, if�Published in Proc. ISPA, Pula, Croitia, June 2001.This work was supported in part by the Lorraine Region.

wished. This kind of image transmission �nds ap-plications in various domains, like archiving, medicalor satellite image processing. The advantage of theembedded coding is to give the user a total controlof the precision in which the image pixels are repre-sented. These image coding techniques, like the em-bedded zerotree wavelet (EZW) algorithm introducedby Shapiro [11] and the SPIHT algorithm introducedby Said and Pearlman [10] are based on a multires-olution decomposition|with unitary transforms|ofthe input image. These algorithms are today widelyused in various applications, particularly for lossy ornearly lossless image compression.Over the last years, papers presenting perfor-mances of lossless image codecs based on multires-olution decompositions have been published. Someof them use wavelet decompositions [1, 7] and someothers use subband decompositions with adaptive ornonlinear �lters [5, 6]. In [5], the authors use apolyphase subband decomposition, associated witha LMS adaptation, where the estimation �lter co-e�cients are updated according to a gradient typealgorithm.In this paper we study a special frame of thenonlinear subband decomposition with perfect re-construction given in [6]. A major di�erence withour approach is that the decomposition and recon-struction �lterbanks are adapted to the input image,in order to minimize a mean square error. More-
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over, the adaptive polyphase subband decompositionstructures used in [5] for image compression di�erfrom ours in three points: the �rst one is that weuse nonlinear �lterbanks (this possibility is alreadymentioned in [5] but is not used), the second one isthat we do not update the �lters coe�cients pixel perpixel (the method we use in order to adapt the �lterscoe�cients to the input image is global) and the thirdone is that we use ARMA �lters (and not just 2D FIR�lters). This allows to appreciably reduce the meansquare error. The second point is also very importantfor applications in lossless image coding. Our methodallows embedded zerotree coding whereas an adaptivemethod could not, because it would be impossible toproperly update the �lters coe�cients at the receiverfrom the truncated bit stream. A description of thenonlinear multiresolution decomposition (with somederivatives) is given in section 2.An application is presented in lossless image com-pression. Many of the existing lossless image codecsdo not use a multiresolution decomposition hencethey do not allow embedded coding. Moreover, theyuse either a �xed predictor �lter (as in the S+P al-gorithm) or a context-based adaptive �lter (as inCALIC codec [12]). In section 3 we give results oftests we have made after having implemented vari-ous derivatives of the above mentioned decomposi-tion. We use either a non separable quincunx dec-imation or a separable decimation at a rate of two-to-one. FIR and ARMA reconstruction �lters havebeen tested. The behaviours of the di�erent methodsare presented as a function of the parameters. Thevarying parameters are the orders of the optimal �l-ter and the number of level in the decomposition. Acomparison between the performances of the di�erentmethods and the S+P algorithm [10] is then given.
2 Adapted nonlinear decompo-sition
The general principle of the subband decompositionswe have implemented is shown in the block diagramof Fig. 1, in the case of a one-level decomposition.The input image I is transformed into four subim-

ages. One of them, I``, results only from a decima-tion applied to I. It is the low resolution subimage.The others are the detail subimages. For a two-leveldecomposition, I`` is processed with the same algo-rithm and hence is transformed into four subimages.The same process is carried on for multilevel decom-positions.
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Figure 1: One-level subband decomposition. The z�1block corresponds to a one row (or column) shift inorder to decompose I into the two sub-images I1 andI2 without loss of information.
The image I is an array with M rows and Ncolumns. Each pixel is coded with K bits. The im-age I is partitioned into two subimages I1 and I2 witha decimation at a rate of two-to-one. We have cho-sen two kinds of decimation: a quincunx one and aseparable one. In the quincunx case, the image I isrotated of �=4 before the down-sampling, this givestwo diamond-shape subimages which are completedwith zeros in order to be represented by the matricesI1 and I2. In the separable case, the down-sampling isalternatively applied to the rows and to the columns.In the following, M2 and N2 denote respectively thenumbers of rows and columns of I2. After the dec-imation, the image I2 is estimated according to thelinear relation

Î2(i; j) = X
(h;k)2�1

ahkI1(i� h; j � k)
+ X

(h;k)2�2

bhkI2(i� h; j � k); (1)
where �1 and �2 are �nite subsets of rational inte-gers (i.e. natural numbers and their opposites). We



have tested di�erent domains �1 and �2 (see sec-tion 3). The coe�cients ahk and bhk are computed inorder to minimize the mean square error
W = M2X

i=1
N2X
j=1

�I2(i; j)� Î2(i; j)�2: (2)
In the relations (1) and (2), the subimages I1 and I2are completed by zeros. A �rst step of the one-leveldecomposition consists in the transformation of theimage I into the two subimages I` and Ih given bythe relations

I` = I1 (3)Ih(i; j) = I2(i; j)� round[Î2(i; j)] (4)
(where round[x] refers to the nearest integer of thereal number x) for all the pixels (i; j) of I2. Thesame algorithm (where the decimation on the rowsis replaced by the decimation on the columns in thecase of a separable down-sampling) is then applied toeach of the two subimages I` and Ih in order to givethe four subimages I``, I`h, Ih` and Ihh.Let us introduce the z-transforms I2(z1; z2),I1(z1; z2) and Ih(z1; z2) of respectively I2(i; j),I1(i; j) and Ih(i; j) and the transfer functions

A(z1; z2) = X
(h;k)2�1

ahkzh1 zk2 (5)
B(z1; z2) = X

(h;k)2�2

bhkzh1 zk2 : (6)
If we neglect the nonlinearity (i.e. the function
round[ ] in the relation (4)) we obtain

Ih(z1; z2) = �A(z1; z2)I1(z1; z2)+ [1�B(z1; z2)]I2(z1; z2) (7)
and hence

I2(z1; z2) = Ih(z1; z2) +A(z1; z2)I1(z1; z2)1�B(z1; z2) : (8)
In order to reconstruct the subimage I2 from I1 andIh, the subset �2 must be chosen in such a way thatthe �lter 11�B(z1;z2) is causal or semi-causal. More-over, this �lter can be unstable and therefore a test of

stability is required (see [2] for 2D recursive �lter sta-bility tests). When the coe�cients bhk are adapted tothe input image, the �lters stability must be testedfor each input image and this takes a lot of CPUtime. The problem of stability tests disappears byintroducing the nonlinearity in the relation (4).For image coding applications, the �lter coe�cientsmust be transmitted to the decoder. In order tosimplify their transmission, we truncate the digits oftheir fractional part according to the relation
âhk = round[S � ahk]=S (9)

(and a similar relation with bhk), where the scale S isa natural number (in our tests S = 106). Let ~I2(i; j)be the left side of the relation (1), when the �ltercoe�cients in the right side are replaced by âhk andb̂hk. Therefore Î2 must be replaced by ~I2 in the rela-tion (4) in order to permit perfect reconstruction ofI2 from I` and Ih:
I2(i; j) = Ih(i; j) + round[ ~I2(i; j)]: (10)

Moreover, it is better to apply the decomposition to azero mean image I, because under this condition thecorrelation between the pixel Ih(i; j) and the pixelsI`(i � h; j � k) in the neighborhood (h; k) 2 �1 ofI`(i; j) vanishes when we neglect the e�ects of the nonlinearity in the relation (4) and the di�erence betweenÎ2 and ~I2. In order to perfectly reconstruct the imageI from the four subimages I``, I`h, Ih` and Ihh, thetransmission of a few parameters is required. Theseparameters are the dimension M , N of I, the �ltersorders, the �lters coe�cients âhk, b̂hk, the mean of Iand the level L of decomposition. Indeed, it is easyto reverse the relations (3) and (4) when the regionof support �2 in the relation (1) is a non-symmetrichalf-plane or a quarter-plane.We have also implemented nonlinear decompo-sitions nearly identical to the above mentionedones. The di�erence lies in the introduction ofthe S-transform [10] in the process, after the down-sampling and before the �ltering. The subimagesI1(i; j) and I2(i; j) are then respectively replaced, inthe relations (1) and (2), by I 01(i; j) and I 02(i; j) so



that
I 01(i; j) = floor[(I1(i; j) + I2(i; j))=2] (11)I 02(i; j) = I1(i; j)� I2(i; j) (12)

(where floor[x] refers to the downward truncationof the real number x). The S-transform is appliedat each stage, i.e. at the stage that decomposes thesubimage I` into I`` and I`h, at the stage that decom-poses the subimage Ih into Ih` and Ihh, and so on fora multi-level decomposition. Since the sum and thedi�erence of two integers give either two odd or twoeven integers, the S-transform is reversible [10]:
I1(i; j) = I 01(i; j) + floor

�I 02(i; j) + 12
� (13)

I2(i; j) = I1(i; j)� I 02(i; j): (14)
3 Progressive lossless imagecoding
Let us introduce di�erent acronyms in order to de-scribe the algorithms we have implemented. Pyrami-dal RLMSE (Rounded Linear Mean Square Estima-tion) is the generic name of all the methods. Thequali�er|either FIR or ARMA|speci�es whetherthe �lters in the relation (8) are either with a FiniteImpulse Response (i.e. B(z1; z2) = 0,

�1 = �(h; k) 2 Z2 j jhj � p and jkj � q	 (15)
and �2 is the empty set) or Auto-Regressive withMoving Average (i.e.
�2 =

8<
:(h; k) 2 Z2

������
0 < h � p and jkj � qor0 < k � q and h = 0

9=
;(16)and �1 is given in the relation (15)). The numbersp and q are the orders of the �lter. We also specifythe down-sampling type: either separable or quin-cunx. All the encoded images have the parametersM = N = 512 and K = 8. In table 1, we showthe variations of the �rst order entropy of the trans-formed image with respect to both the orders (p; q)of the �lter and the level L of decomposition for a

(p; q)nL 2 3 4 5 6(1,1) 5:30 5:07 5:02 5:01 5:00(1,2) 5:28 5:05 5:00 4:99 4:98(2,2) 5:27 5:03 4:98 4:97 4:97
(a)

(p; q)nL 2 3 4 5 6(1,1) 5:33 5:11 5:06 5:05 5:05(1,2) 5:32 5:09 5:04 5:03 5:03(2,2) 5:30 5:07 5:02 5:01 5:01
(b)

(p; q)nL 2 3 4 5 6(1,1) 5:38 5:12 5:06 5:04 5:04(1,2) 5:35 5:09 5:03 5:02 5:01(2,2) 5:34 5:07 5:01 5:00 5:00
(c)

Table 1: First order entropy of the transformed imageby the pyramidal RLMSE algorithm with a quincunxdecimation and ARMA �lters (a), FIR �lters (b) orARMA �lters associated with the S-transform (c).The image is Goldhill 512.
pyramidal RLMSE algorithm with a quincunx dec-imation and either ARMA �lters (a), or FIR �lters(b), or ARMA �lters associated with the S-transform(c). In table 2 (a), (b) and (c) the same variationswith a separable decimation are shown. In table 3 wepresent the �rst order entropy of the image obtainedwith the S+P transform whose �lter gives the small-est entropy (it is predictor B [10]). In table 4, 5 and6 we show the variance (i.e. the ratio of the meansquare error over the number of pixels) of the trans-formed image for the same algorithms as in table 1,2 and 3 respectively. All the presented results havebeen obtained with the image Goldhill.It is well known [10] that the minimum of the vari-ance does not generally coincide with the minimum ofthe �rst order entropy, when parameters vary. Never-theless, in our tests of pyramidal RLMSE algorithmsthese minima are generally close. It is not easy tocompare various multiresolution decompositions inthe aim of lossless image coding, because the discern-ing criteria in this case is the size of the bit streamafter the reversible encoding of the transformed im-age. Therefore, the performances of the codec dependon the reversible encoder applied to the transformed



(p; q)nL 2 3 4 5 6(1,1) 5:25 5:02 4:97 4:96 4:95(1,2) 5:24 5:01 4:95 4:94 4:94(2,2) 5:23 5:00 4:95 4:93 4:93
(a)

(p; q)nL 2 3 4 5 6(1,1) 5:27 5:04 4:99 4:98 4:98(1,2) 5:27 5:04 4:99 4:98 4:98(2,2) 5:26 5:04 4:98 4:97 4:97
(b)

(p; q)nL 2 3 4 5 6(1,1) 5:31 5:05 4:99 4:97 4:97(1,2) 5:30 5:04 4:97 4:95 4:95(2,2) 5:29 5:03 4:96 4:95 4:95
(c)

Table 2: First order entropy of the transformed imageby the pyramidal RLMSE algorithm with a separabledecimation and ARMA �lters (a), FIR �lters (b) orARMA �lters associated with the S-transform (c).The image is Goldhill 512.
S+PnL 2 3 4 5 6S+P 5:21 5:01 4:96 4:95 4:95

Table 3: First order entropy of the S+P transform.The image is Goldhill 512.
image. However, the �rst order entropy of the trans-formed image gives an indication of the ability of thepyramidal RLMSE algorithms to lossless image cod-ing. We have implemented an embedded zero-treecoding applied to the transformed image, followingthe SPIHT method described in [9]. In table 7, thecompression bit rate obtained with the reversible en-coding applied after pyramidal RLMSE decomposi-tions is given and compared with the S+P transform,for di�erent images.
4 Conclusion
We have presented an adapted nonlinear multireso-lution decomposition (with some derivatives) of stillimages that permits perfect reconstruction. It is ahierarchical pyramidal decomposition with maximal

(p; q)nL 2 3 4 5(1,1) 216:98 114:12 90:33 84:61(1,2) 215:08 112:10 88:17 82:33(2,2) 212:55 109:33 85:34 79:59
(a)

(p; q)nL 2 3 4 5(1,1) 223:64 121:82 98:52 92:95(1,2) 221:52 119:56 96:16 90:57(2,2) 219:92 117:76 94:26 88:67
(b)

(p; q)nL 2 3 4 5(1,1) 218:40 116:58 93:20 87:95(1,2) 213:70 111:27 87:66 82:35(2,2) 211:24 108:47 84:71 79:39
(c)

Table 4: Variance of the transformed image by thesame pyramidal algorithms as in table 1.
decimation. The decomposition and reconstruction�lterbanks are based on rounded linear mean squareestimations. With ARMA reconstruction �lters, therounding applied to the output ensures the stabilityof the system, even when the ARMA �lter is BIBOunstable.An application in lossless image coding has beenpresented. Let us emphasize that the adapted mul-tiresolution decomposition described in this paper al-lows embedded zero-tree coding. The performancesof our decomposition and of the S+P transform havebeen compared. It appeared that our decompositionhas a greater coding gain for IRM images.
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